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Abstract
Heat transfer modeling plays an integral role in design and optimization of traditional, as well
as modern emerging thermal-fluid systems. However, mostly available models, known as
eddy diffusivity models, face challenges in prediction of second order statistics such as heat
fluxes in homogeneous directions and temperature variance. Additionally, these models are
developed targeting fluids with Prandtl (Pr ) number around unity and thus, having difficulty
to capture thermal fields of working fluids with Pr numbers significantly different than unity
at an acceptable level of accuracy. In an attempt to take first step to address the existing
shortcomings, this investigation aims to identify a reliable framework to predict the turbulent
thermal field of fluids with different Pr numbers (0.025, 0.71 and 10) in wall-bounded shear
flows. Towards this, most advanced models, i.e. implicit and explicit algebraic turbulent
heat flux models that try to incorporate the anisotropic nature of the turbulent heat flux,
have been applied to a turbulent attached boundary layer of various working fluids with
significantly different Pr numbers. It turns out that the explicit framework based on the
representation theory is potentially capable of dealing with complex turbulent thermal fields
and to address shortcomings of currently available models. Moreover, it has been shown
that thermal time scale plays an integral role to accurately predict thermal field of fluids with
Pr numbers significantly different than unity, as well as high order statistical quantities (e.g.
temperature variance) of fluids with Pr numbers around unity.
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Name
bi j =ui u j /2k −1/3δi j Reynolds stress anisotropy tensor
cp specific heat capacity at constant pressure
k turbulent kinetic energy
p pressure fluctuations
ui velocity fluctuations
ui u j Reynolds stress tensor
Pr Prandtl
R = τθ/τm thermal to mechanical time scale ratio
Re Reynolds number
Reτ =Uτδ/ν turbulent Reynolds number
ST source terms in temperature equation
T mean temperature
Tτ = qw/ρcpUτ friction temperature
Ui mean velocity
Uτ =Reτν/δ friction velocity
α =λ/ρcp thermal diffusivity
δ channel half height
δi j Kronecker delta
ε dissipation of kinetic energy
εθ dissipation of the temperature variance

θ2 temperature variance
λ thermal conductivity
ν kinematic viscosity
νt turbulent kinematic viscosity
θ temperature fluctuations
θui turbulent heat flux
ρ density
τm = k/ε mechanical time scale

τθ = θ2/2εθ thermal time scale
τ =√

τmτθ mixed time scale

( ) mean value
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1 INTRODUCTION

The passive transport of heat in a turbulent environment plays an integral role in develop-

ment and optimization in various advanced and emerging systems. These include cooling

systems for nuclear power plants, where liquid metal is used as coolant [28, 4], boiler systems

for biomass combustion [19], and heat exchange devices in the petroleum/petrochemical

industry [32], to name only a few. The design and optimization of such systems rely heavily

on computational modeling and simulation as experimental investigations are either not

possible or prohibitively expensive [35].

Development and optimization of such systems require insight into complex dynamics

of heat and mass transfer inside the system, which necessitates the application of reliable

models. Furthermore, the above mentioned applications impose an additional challenge for

models in predicting the heat transport at an acceptable level of accuracy when the Prandtl

(denoted as Pr ) number of the working fluid is significantly different than unity [8, 3, 42],

i.e. ranges from Pr << 1 for liquid metal to a few thousands for crude oils. Thus, understand-

ing and correct modeling of heat transport have introduced a major challenge in the past

decades [7]. One of the underlying challenges is the strong dependency of the thermal field

(temperature) on the flow field, which often is highly turbulent. As a direct consequence, an

appropriate model for the momentum transport is an indispensable necessity and therefore,

the main focus of modeling in the past few decades has been placed on turbulent flow field

modeling [36]. The intuitive assumption is that a better prediction of momentum quantities

leads to a better prediction of thermal quantities. This has led to the formulation of the

first order models for turbulent heat fluxes, i.e. the eddy diffusivity approach based on the

Reynolds Analogy. While this approach is a drastic simplification of the physical mechanisms,

it has been applied successfully to predict first order statistics such as mean temperature

in a large number of industrial applications using Computational Fluid Dynamics (CFD)

technique. It is worth noting that these applications mostly deal with working fluids with Pr

number around unity [2]. It was shown in [41, 42, 8] that the eddy diffusivity approach suffers

from serious shortcomings when applied to predict second order statistics or thermal field of

fluids with Pr number different than unity. Further, due to the mathematical formulation of

the eddy diffusivity models—the heat flux is proportional to the mean temperature gradient

[18]—a non-existing temperature gradient leads to a non-existing heat flux, which leads to

4



inaccurate prediction of turbulent heat fluxes in homogeneous direction in turbulent shear

flows [42].

In order to address the shortcomings of the eddy diffusivity models, several approaches with

different levels of complexity have been proposed based on the concept of cross-streamwise

mixing, which is known to be the major underlying mechanism for both momentum and

heat transfer [36]. These include, the generalized gradient diffusion hypothesis (GGDH),

which includes time scales for the momentum or temperature field [5, 11], and algebraic

heat flux models (AFMs), which introduce additional correlations to predict the heat flux

[25, 21, 18, 40, 26]. However, these approaches have never been extensively investigated and

there is only limited information on prediction capabilities of these methods in the literature

[30, 8]. Nevertheless, it should be noted that algebraic heat flux models may offer promising

potential to overcome shortcomings of the classical methods, based on limited information

available in the literature [8, 40, 15]. Therefore, this study centers these models and aims

to provide a comprehensive assessment of these methods when applied to a fully attached

turbulent boundary layer using different working fluids.

There are two major variants of the AFMs distinguished by two fundamental different

approaches: implicit and explicit models. The former is a result of truncating the exact

heat flux equation [15, 10], while the latter is derived based on the representation theorem

[40, 26]. There are few recent efforts on applications of implicit methods to predict thermal

behavior of low Pr number fluids in turbulent wall bounded channel flow [36, 34], which will

be discussed in section 2.3.3. Although some improvements were achieved compared to the

classical methods, these studies do not provide some relevant statistical quantities such as

the heat fluxes and dissipation of temperature variance. Additionally, these studies mainly

target fluids with Pr numbers less than unity, i.e. the implicit models were calibrated/tuned

for low Pr number fluids, which limits the application of the models.

In contrast, there is only one study that uses the explicit model to predict the thermal

field in a turbulent channel flow [26]. This study shows clear improvements as compared to

the classical approach (eddy diffusivity). However, detailed results are only presented for a

turbulent rotating channel flow with main emphasis on first order statistics.

The current study presents a comprehensive assessment of predictive capabilities of the

most recent versions of implicit and explicit turbulent heat flux models for first and second

order statistics, when applied to 3D wall-bounded shear flow using different working fluids.
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Additionally, the assessment includes sensitivity analysis with respect to the turbulence

model used to describe the flow field.

Moreover, both implicit and explicit models use only mechanical time scale in their for-

mulations, as will be discussed in the following sections. As a result of this, relevance and

effects of thermal time scale in prediction capability of heat flux models remains unclear.

This investigation aims to study the effects of thermal time scale on the predictive capabilities

of both models. Therefore, the existing mechanical time scale is modified by including the

thermal time scale in both models (as shown in section 2.3) and results obtained by both

original and modified models will be assessed and analyzed. However, it should be noted

that the goal here is only to study model sensitivity to the inclusion of thermal time scale and

therefore, no additional model calibrations/tuning have been performed after inclusion of

the thermal time scale into the model.

The paper is organized as follows: in section 2, the governing equations including employed

turbulence and heat flux models will be presented and discussed. In section 3, an overview of

test cases and the numerical approach is provided. Results obtained from simulations are

presented and discussed in section 4. The paper concludes with a summary and conclusion

in section 5.

2 GOVERNING EQUATIONS AND MODEL DESCRIPTION

Two different turbulence models, including Launder-Sharma’s k−εmodel [22] and Lien-Abe’s

k−εmodel, will be used. The major difference between these models is that Launder-Sharma’s

model is a linear eddy viscosity model, while Lien-Abe’s is a non-linear eddy viscosity model.

This model is based on Lien’s k−εmodel [23], modified with the non-linear term proposed by

Abe [1]. As it will be shown and discussed later, the non-linear model is capable of predicting

the Reynolds Stress tensor with a remarkably higher accuracy compared to the linear model,

which should lead to more accurate predictions of thermal quantities.
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2.1 TURBULENCE MODELS

2.1.1 LAUNDER AND SHARMA’S k −ε MODEL

The Launder-Sharma k − ε [22] model is one of the most commonly used linear models.

Henceforth, this model will be denoted as LS. It employs two transport equations, one for

turbulent kinetic energy k, and one for the dissipation rate ε. The model equations read:

Dk

Dt
= ∂

∂xi

⎡⎢⎢⎢⎢⎣

⎛
⎝
ν+ νt

σk

⎞
⎠
∂k

∂xi

⎤⎥⎥⎥⎥⎦
+Pk −ε, (1)

D ε̃

Dt
= ∂

∂xi

⎡⎢⎢⎢⎢⎣

⎛
⎝
ν+ νt

σε

⎞
⎠
∂ε̃

∂xi

⎤⎥⎥⎥⎥⎦
+C1Pk

ε̃

k
−C2 f2

ε̃2

k
+E . (2)

Where Pk =−ui u j
∂Ui

∂x j
, νt =Cµ fµ

k2

ε̃
and −ui u j = bi j −

2

3
δi j k. (3)

Here, bi j is the Reynolds stress anisotropy tensor and since this is a linear model, bi j holds

only a linear term (denoted as l bi j ):

bi j = l bi j = Si j = νt
⎛
⎝
∂Ui

∂x j
+
∂U j

∂xi

⎞
⎠

. (4)

Further details on model constants and functions, i.e. C1,C2,Cµ,σk ,σε, f2, fµ, ε̃,E , are

provided in [22].

2.1.2 LIEN-ABE k −ε MODEL

As previously mentioned, the Lien-Abe model is based on the linear part of the k −ε model

proposed in [23] and employs the non-linear term introduced by Abe et. al [1]. This model

will be denoted as LA in the current study, and below is a summary of the model equations:

Dk

Dt
= ∂

∂xi

⎡⎢⎢⎢⎢⎣

⎛
⎝
ν+ νt

σk

⎞
⎠
∂k

∂xi

⎤⎥⎥⎥⎥⎦
+Pk −ε, (5)

Dε

Dt
= ∂

∂xi

⎡⎢⎢⎢⎢⎣

⎛
⎝
ν+ νt

σε

⎞
⎠
∂ε

∂xi

⎤⎥⎥⎥⎥⎦
+Cε1Pk

ε

k
−Cε2 f2

ε2

k
+E( f2), (6)
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where bi j includes two further non-linear terms (2bi j and sbi j ), in addition to the linear

term (l bi j ) :

bi j = l bi j + 2bi j + sbi j . (7)

These two additional terms are rather complex and further details are provided

in [1] while details on model constants for the k − ε equations and functions,i.e.

AE ,Cε1,Cε2,Cµ,κ, y∗,σk ,σε, f2,E( f2), le , are provided in [23] and [39].

2.2 INTERNAL ENERGY EQUATION

The Reynolds-averaged internal energy equation reads as [10]:

ρcp
DT

Dt
= ST +

∂

∂xi
[(λ ∂T

∂xi
)−ρcpθui]. (8)

Assuming incompressible flow, constant physical properties and neglecting additional

source terms (such as radiation), the equation can be written as below:

DT

Dt
= ∂

∂xi
[( ν

Pr

∂T

∂xi
)−θui]. (9)

The quantity θui on the right hand side is called turbulent heat flux and is the Reynolds-

averaged fluctuating velocity-temperature correlation. This quantity needs to be modeled in

order to close the equation.

2.3 TURBULENT HEAT FLUX

As previously mentioned, the heat flux must be determined to close the energy equation.

The exact transport equation for θui for incompressible non-buoyant flows in the Reynolds

Averaged Navier Stokes equation (RANS)-framework reads as below [15]:

8



Dθui

∂t
= ∂

∂xk

⎛
⎝
−θui uk +

θp

ρ
δi k +νθ

∂ui

∂xk
+αui

∂θ

∂xk

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dθi

+ p

ρ

∂θ

∂xi
²
Φθi

−
⎛
⎝

ui uk
∂T

∂xk
+θuk

∂Ui

∂xk

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pθi

−(ν+α)∂ui

∂xk

∂θ

∂xk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

εθi

, (10)

where Dθi is the diffusive transport,Φθi is the pressure-temperature correlation, Pθi is the

production due to combined actions of mean velocity and mean temperature gradient, and

εθi is the dissipative correlation/destruction term. The direct application of this equation to

predict the heat flux is not possible due to existing of several terms that are not know (Dθi ,

Φθi and εθi ), and need to be modeled. Explicit and implicit algebraic methods are among

strategies to model this equation and will be discussed in detail in this study. Thereby, it will

be explained how the unknown terms are treated and modeled.

2.3.1 MECHANICAL AND THERMAL TIME SCALES

There are three time scales i.e., mechanical, thermal, and a combination out of the mechanical

and thermal (denoted as mixed time scale), that can be relevant to capture the turbulent

thermal field at an acceptable level of accuracy and fidelity. The mechanical time scale is

defined as the ratio of the turbulent kinetic energy k and its dissipation ε:

τm = k

ε
. (11)

The thermal time scale follows the same principle and is represented by the ratio of the

temperature variance θ2 and its dissipation εθ:

τθ =
θ2

2εθ
. (12)

However, in contrast to the mechanical time scale, this quantity cannot be obtained di-

rectly from the flow field and requires data on θ2 and εθ to be obtained from corresponding

transport equations discussed in Section 2.3.2.

The combined time scale τ is a combination of both time scales:
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Figure 1: Ratio of thermal to mechanical time scale in turbulent channel flow for different
Prandtl numbers obtained from DNS data [13]

τ =

¿
ÁÁÀk

ε

θ2

εθ
. (13)

As mentioned above, two more transport equations for θ2 and εθ are necessary to calculate

this time scale. However, often an overly simplistic assumption that avoids an additional

transport equation for εθ is used. This approach assumes a constant thermal to mechanical

time scale ratio, denoted as R = τθ/τm , to provide information on the thermal time scale.

With the typical value ofR = 0.5 [36, 16], it results in an algebraic expression for εθ:

εθ =
εθ2

k
. (14)

Moreover, applying this simplification into the mixed time-scale, Eq. 13, leads to the

mechanical time scale:

τ =

¿
ÁÁÀk

ε

θ2

εθ

Eq. 14= k

ε
. (15)

Several studies [17, 37, 18] have shown that this assumption is appropriate for fluids with

Pr number around unity, but has difficulty when used to predict the thermal field of fluids

with non-unity Pr numbers [42, 31]. Fig. 1 depicts dynamics of R in a turbulent channel

flow for different Pr numbers based on Direct Numerical Simulation (DNS) data. It can be

seen that this assumption could be considered as appropriate only for fluids with Pr number

around unity.
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2.3.2 TEMPERATURE VARIANCE AND ITS DISSIPATION

Modeling of the equation for temperature variance θ2 is relatively straightforward and the

modeled equation reads as below [36]:

Dθ2

Dt
= 2Pθ −2εθ +

∂

∂xi
[( ν

Pr
+ νt

σθ
)∂θ

2

∂xi
], (16)

where Pθ = −θui∂T /∂xi is the production of temperature variance. Details on model

constants are provided in [36]. It should be noted that σθ denotes the turbulent Pr number,

usually and here taken constant equal to 0.9. However, the turbulent Pr number is especially

for low Pr numbers neither constant nor close to 0.9 [14]. However, an investigation of the

influence of a non-constant turbulent Pr number is a complex topic and is not scope of this

paper.

Modeling εθ is more complex compared to closing the equation for the dissipation of

turbulent kinetic energy ε. As stated in [36, 20, 38, 30, 8, 24], twice as many free parameters

need to be determined. Several models have been proposed [27, 18, 24, 30] which follow

the same modeling methodology as for ε. This leads to the following general form for the

transport equation for εθ [18]:

D ε̃θ
Dt

=Dεθ +Cθ
ε1Pθ

ε̃θ

θ2
+Cθ

ε3Pk
ε̃θ

k
−Cθ

ε4

ε̃2
θ

θ2
−Cθ

ε5 fεθ
ε̃θε̃

k
+ Eθ¯

near-wall
correction

, (17)

where

Pk =−ui u j
∂Ui

∂x j
, Pθ =−θui

∂T

∂xi
, Eθ = 2ααt (

∂2T

∂x j∂xk
)

2

, ε̃θ = εθ −α(
∂
√
θ2

∂xk

⎞
⎠

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
εθ at

the wall

.

Note that the model differs in near-wall correction and εθ at the wall. The model proposed

in [18] will be used in this study with Eθ and ε̃θ as defined above.

2.3.3 IMPLICIT HEAT FLUX MODEL

The implicit heat flux model takes advantage of existing known terms (particularly the pro-

duction term Pθi ) in the transport equation for the heat flux (Eq. 10). Application of the weak
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equilibrium hypothesis [33, 9] along with neglecting the destruction term εθi , leaves only the

pressure scrambling term Φθi to model. The most common method to model this term is

proposed in [6, 15]:

Φθi =−
1

τ

⎡⎢⎢⎢⎢⎣

1

Ct0
θui +Ct4ai jθu j

⎤⎥⎥⎥⎥⎦
, (18)

where ai j = ui u j /k −2/3δi j . The above model for Φθi results in the following form for

implicit algebraic turbulent heat flux model:

θui =−Ct0τ

⎡⎢⎢⎢⎢⎣
Ct1ui u j

∂T

∂x j
+Ct2θu j

∂Ui

∂x j

⎤⎥⎥⎥⎥⎦
+Ct4Ct0ai jθu j . (19)

As mentioned before, the time scale τ is the mixed time scale that requires information of θ2

and εθ. However, investigations concerning turbulent wall-bounded shear flows [36, 34, 16]

use a simplified version of the model based on the constant thermal to mechanical time scale

assumption withR = 0.5. The simplified form of the model reads as follows:

θui =−Ct0
k

ε

⎡⎢⎢⎢⎢⎣
Ct1ui u j

∂T

∂x j
+Ct2θu j

∂Ui

∂x j

⎤⎥⎥⎥⎥⎦
+Ct4Ct0ai jθu j . (20)

Further, it was shown [36] that the model constants need to be modified to reach an

acceptable level of accuracy for differnt Pr numbers, leading to a correlation for Ct1. This

resulting model is referred to as AHFM-NRG, and will be used in this investigation. Model

coefficients are summarized in Tab. 1.

Ct0 Ct1 Ct2 Ct4

0.2 0.053 ln (RePr )-0.27 0.6 0.0

Table 1: Coefficients for the implicit heat flux model AHFM-NRG as given by [36]
pdflatex

It should be noted that all previously mentioned studies that use the AHFM-NRG model

are limited to fluids with Pr numbers around or less than unity and do not provide data on

some relevant statistical quantities such as the heat fluxes. Moreover, they do not address the

sensitivity of the heat flux model with respect to the turbulence model used to described the

flow field.

In this study, the AHFM-NRG model will be assessed extensively when applied to turbulent

(attached) wall-bounded shear flows of different working fluid. Additionally, the AHFM-NRG
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model will be modified by incorporating the thermal time scale into the model, i.e. the

mechanical time scale will be replaced by the mixed time scale. This will allow to identify

relevance of the thermal time scale, as well as, if/how the implicit modeling methodology

responds to the inclusion of the thermal time scale.

2.3.4 EXPLICIT HEAT FLUX MODEL

An explicit model for turbulent heat flux can be constructed based on the representation

theorem. Assuming an incompressible, non-buoyant flow at high Reynolds numbers, the

functional relationship for the turbulent heat flux is given as below [40]:

θui =− fi
⎛
⎝

ui u j ,Si j ,Wi j ,T, j ,T,ε,θ2
⎞
⎠

, (21)

where Si j is the mean rate of strain and Wi j is the mean vorticity tensor.

For the determination of the model, it is assumed that anisotropies and turbulent time-

scales are sufficiently small and that an equal balance between the effects of rotational and

irrotational strain rates exists. Further details including a detailed derivation of the model are

provided in [40]. The model reads as follows:

θui =−
⎡⎢⎢⎢⎢⎣

C1τe k
∂T

∂xi
+C2τe ui u j

∂T

∂x j
+C3τ

2
e k
∂Ui

∂x j

∂T

∂x j
+C4τ

2
e
⎛
⎝

ui uk
∂U j

∂xk
+u j uk

∂Ui

∂xk

⎞
⎠
∂T

∂x j

⎤⎥⎥⎥⎥⎦
. (22)

Here, τe can represent either the mechanical or thermal or mixed time scale. Choosing

the mechanical time scale (following the same assumption as for the implicit flux model, a

constant ratio between mechanical and thermal time scale withR = 0.5) leads to the proposed

model in Younis et al. [40]:

θui =−
⎡⎢⎢⎢⎢⎣

C1
k2

ε

∂T

∂xi
+C2

k

ε
ui u j

∂T

∂x j
+C3

k3

ε2

∂Ui

∂x j

∂T

∂x j
+C4

k2

ε2

⎛
⎝

ui uk
∂U j

∂xk
+u j uk

∂Ui

∂xk

⎞
⎠
∂T

∂x j

⎤⎥⎥⎥⎥⎦
. (23)

This model has not been tested in fully attached turbulent boundary layers. However, there

is a recent investigation [26] that employs a slightly modified version to study non-isothermal

rotating and non-rotating turbulent channel flow. The modified model reads as follows:
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θui =−
⎡⎢⎢⎢⎢⎣

C1
k2

ε

∂T

∂xi
+C2

k

ε
ui u j

∂T

∂x j
+C4

k2

ε2

⎛
⎝

ui uk
∂U j

∂xk
−u j uk

∂Ui

∂xk

⎞
⎠
∂T

∂x j

⎤⎥⎥⎥⎥⎦
. (24)

While this model offers remarkable improvements compared to the classical Reynolds

Analogy based model, it is worth noting that only the mechanical time scale was included as

well as only working fluids with Pr around unity were tested. This modified model will be

used in this study and the model coefficients are given in Tab. 2.

C1 C2 C3 C4

0.03 0.21 0.0 -0.105

Table 2: Coefficients for the explicit heat flux model as given by [26]

Moreover, similar to the implicit heat flux model, sensitivity of the model with respect to

the turbulence model and effect of considering the thermal time scale will be investigated.

Inclusion of the thermal time scale into the model and using the mixed time scale will result

in the following form of the model:

θui =−
⎡⎢⎢⎢⎢⎣

C1τk
∂T

∂xi
+C2τui u j

∂T

∂x j
+C4τ

2k
⎛
⎝

ui uk
∂U j

∂xk
−u j uk

∂Ui

∂xk

⎞
⎠
∂T

∂x j

⎤⎥⎥⎥⎥⎦
. (25)

It should be noted that the model constants remain same after modifying the time scale, as

discussed in the introduction.

3 NUMERICAL SETUP

3.1 FLOW CONFIGURATION

The configuration is a fully developed turbulent channel flow as shown in Fig. 2. The size

of the computational domain is 2πδ,2δ,πδ, where δ is the channel half height. Different

Prandtl numbers (0.025, 0.71, 10) have been considered based on the availability of reference

(DNS) data. The details of all simulations are summarized in table 3.

Different mesh designs have been used for different Prandlt numbers and in particular,

a different spacing in wall-normal direction is required to achieve appropriate distribution

according to the findings in [42]. A simple-gradient spacing is used to create suitable distri-

butions in the wall-normal direction, see [29]for details.
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Figure 2: Sketch of horizontal channel flow configuration

Note that the Reynolds number Reτ =Uτδ/ν is defined based on the friction velocity at

wall (Uτ) and channel half height δ. A constant pressure gradient is applied via an additional

source term in the momentum equation to drive the flow to the targeted Reynolds number.

Periodic boundary conditions are imposed in the streamwise and spanwise directions, and

no-slip condition is used at both walls. For the temperature field, a mean uniform heat flux at

the walls, and periodic boundary conditions in the streamwise and the spanwise directions

have been applied. Further, it is important to mention that the temperature variance and its

dissipation are set to zero at the wall, i.e. θ2∣w and εθ∣w = 0. The results are normalized by the

δ, Uτ, the kinematic viscosity ν, the density ρ, and the friction temperature Tτ.

Three different model categories for the thermal field will be applied and assessed in this

investigation. These include TV-R, TV-E and TV-M. TV-R uses solely the mechanical time

scale along with the transport equation for θ2, (Eq. 16), and the algebraic expression to

determine εθ, (Eq. 14), for both the implicit and explicit heat flux model. TV-E makes use of

the transport equation for εθ, (Eq. 17), to provide information for thermal dissipation while

using only the mechanical time scale similar to category TV-R. The last category (TV-M) takes

leverage of the mixed time scale τ defined by Eq. 13 in both turbulent heat flux models. All

three categories along with corresponding equations are summarized in Tab. 4. It should

be noted that the heat flux calculations in categories TV-R and TV-E are independent of the

results obtained for θ2 and εθ. However, these two quantities are solved as well for further

analysis about second order thermal statistics.

Reτ Pr Resolution Reference data
395 0.025,0.7,10 48×36×6 Kawamura et al. [12]

Table 3: Overview of flow and fluid properties

15



category
θui -Equation

time scale θ2-Equation εθ-Equation
Implicit Explicit

TV-R Eq. 20 Eq. 24 k
ε Eq. 16 Eq. 14

TV-E Eq. 20 Eq. 24 k
ε Eq. 16 Eq. 17

TV-M Eq. 19 Eq. 25

√
k
ε
θ2

εθ
Eq. 16 Eq. 17

Table 4: Overview of model categories

3.2 CODE DESCRIPTION

All numerical simulations presented in this publication are performed using OpenFOAM-

v2.2.2 with necessary modifications for the purpose of this paper. The PISO-algorithm has

been used and second order schemes have been applied for velocity, turbulence and thermal

quantities.

3.3 VALIDATION AND COMPARISON OF TURBULENCE MODELS

In this section, two turbulence models used in this investigation will be assessed and com-

pared when applied to a fully developed turbulent channel flow. Mesh convergence studies

have been done for all simulations and only mesh independent results are presented. All sim-

ulations have been conducted in steady state fashion using RANS based turbulence models

described in section 2.1. Mean velocity, turbulent kinetic energy and its dissipation are shown

in Fig. 3. It can be seen, that the velocity is well predicted by both models. Turbulent kinetic

energy k is better predicted by LA model in the peak-region, while the near-wall region is

underpredicted by both models. The dissipation of turbulent kinetic energy (ε) is predicted

with the same accuracy, however, with a strong underprediction in the wall- region, while the

mechanical time scale that enters the turbulent heat flux models is fairly well predicted.

16



100 101 102
0

5

10

15

20

y+

U
+

DNS
LS
LA

(a) Mean velocity

100 101 102
0

2

4

6

y+

k+

DNS
LS
LA

(b) Turbulent kinetic energy

100 101 102
0

0.1

0.2

0.3

y+

ε+

DNS
LS
LA

(c) Dissipation of turbulent kinetic energy

100 101 102
0

100

200

300

400

y+

τ m

DNS
LS
LA

(d) Mechanical time scale

Figure 3: Reτ= 395. Flow quantities

The Reynolds stresses play integral roles in prediction of the turbulent heat fluxes, as

can be deduced from the governing equations (Eqs. 19 and 25). Fig. 4 demonstrates these

Reynolds stresses obtained from the two turbulence models. It can be observed that the

normal stresses (uu, v v , w w) are remarkably better predicted by the non-linear model (LA).

It should be noted that other components of the Reynolds stress tensor (uw , v w) also enter

the heat flux equations in more complex configurations, however, they are zero for the test

case considered here.
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Figure 4: Reτ= 395. Reynolds Stresses

4 RESULTS AND DISCUSSION

4.1 Pr = 0.71

Fluids with Prandtl numbers around unity differ strongly in their behavior compared to

high and low Pr number fluids. In particular, the thermal and momentum boundary layers

overlay for fluids with Pr number around unity and thus, a constant value (usually 0.5) for the

ratio of mechanical to thermal time scale works reasonably well, as also shown in [17, 37, 18].

It follows that considering the thermal time scale in the heat flux model may not provide

remarkable modifications, i.e. results from all three model categories (TV-R, TV-E and TV-M)

share a lot of similarity. Therefore, only thermal quantities that are significantly affected by

the inclusion will be demonstrated and discussed.
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4.1.1 IMPLICIT HEAT FLUX MODEL

4.1.1.1 Mean Temperature

Fig. 5 presents mean temperatures obtained for Pr = 0.71 at Reτ = 395 for TV-R and TV-

E. It should be noted that both models result in the same temperature profile, since the

temperature equation is independent of θ2 and εθ, see section 2.3.3. The mean temperature

is not well captured, irrespective of the turbulence model used to capture the flow field.

It appears that while the implicit model is sensitive to the flow field prediction (linear vs.

non-linear turbulence model), it does not respond in a consistent manner to improvements

of flow field quantities such as the Reynolds stresses, provided by the non-linear turbulence

model (LA). This behavior of the model is somehow peculiar since one of the key elements

of the model, i.e. the Reynolds stress tensor (particularly v v), is better predicted when the

non-linear turbulence model is used. Furthermore, misprediction of the mean temperature

traces back to inaccuracy in prediction of the wall-normal heat flux, which also responds

inconsistently to the flow field prediction accuracy (Fig. 6). This might be indicative of model

inability to establish a consistent coupling with the flow field. This may suggest that the

current version of the model proposed by [36] has been calibrated/tuned for the specific

turbulence model used in the investigation, which makes the model less reliable for general

applications.
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Figure 5: Mean temperature obtained by TV-R and TV-E for Pr = 0.71 at Reτ= 395 with the
implicit heat flux model and the two shear stress models LS and LA
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4.1.1.2 Streamwise and Wall-Normal Heat Flux

The streamwise and wall-normal heat fluxes obtained by TV-R and TV-E approaches are

shown in Fig. 6. Similar to mean temperature, the heat fluxes are independent of temperature

variance and its dissipation. The streamwise heat flux is strongly mispredicted by the implicit

heat flux model regardless of the turbulence model used to provide flow field quantities. In

fact, there is only little sensitivity to the heat flux in the homogeneous direction. In contrast,

the implicit model is at least capable of capturing the overall behavior of the wall-normal

heat flux, however with an underprediction of the peak. It is worth noting that it seems that

the near-wall region is better predicted with the linear turbulence model. However, this is

deemed to be an accident, given the lower prediction quality of the Reynolds stresses and in

particular v v , which is the major contributor to the heat fluxes, Eq. 20.
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Figure 6: Streamwise (a) and wall-normal (b) heat fluxes obtained by TV-R and TV-E for Pr =
0.71 at Reτ= 395 with the implicit heat flux model

4.1.1.3 Temperature Variance

Unlike the mean temperature and heat fluxes, there are differences in results obtained by

TV-E and TV-R for temperature variance (equivalently, the root mean square (rms) value

of temperature fluctuations denoted as θr ms), see Section 3. Regarding TV-R, irrespectively

of the turbulence model, the implicit heat flux model fails to capture the general behavior

of θr ms , see Fig. 7a. Using an extra transport equation for the thermal dissipation εθ (TV-

E) does not provide improvements, compared to TV-R, while exacerbates the situation in

the core region. The discrepancies trace back to two effects: first, misprediction of mean

temperature and heat fluxes (Fig. 5 and 6), since mean temperature gradient and heat fluxes
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are major contributors in production of θ2, as shown in Eq. 16. Secondly, k is mispredicted

in the wall region by both turbulence models as discussed previously. This quantity enters

the transport equation for θ2 by means of νt , which may negatively impact the prediction

accuracy. Additionally, σθ in Eq. 16 is considered to be constant. However, according to DNS

data [14] this quantity varies in the wall-region but to study the effects of variable σθ is not

within the scope of the present investigation.
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Figure 7: Temperature rms obtained by TV-R and TV-E for Pr = 0.71 at Reτ= 395 with the
implicit heat flux model

4.1.2 EXPLICIT HEAT FLUX MODEL

4.1.2.1 Mean Temperature

In Fig. 8, the mean temperatures obtained by the explicit heat flux model using both tur-

bulence models within TV-R and TV-E approaches are shown. The result using the linear

turbulence model (LS) underestimate the profile strongly, which is due to the overestimation

of the wall-normal heat flux, Fig. 9c, while the result using the non-linear turbulence model

(LA) is in good agreement with the reference data, consistent with prediction accuracy of the

wall-normal heat flux in the wall region. More importantly, in comparison to the implicit

heat flux model, the explicit heat flux model shows a consistent sensitivity to the turbulence

model, i.e. the more accurate the Reynolds stresses, the more accurate the thermal field.

4.1.2.2 Streamwise and Wall-Normal Heat Flux

Fig. 9 shows the streamwise and wall-normal heat fluxes obtained by TV-R, TV-E and TV-

M. In contrast to the implicit model (Fig. 6 a), the explicit heat flux model demonstrates
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Figure 8: Mean temperature obtained by TV-R and TV-E for Pr = 0.71 at Reτ= 395 with the
explicit heat flux model

potential capability to capture the streamwise heat flux, see Fig. 9a. In particular, the model

shows a decent capability, when the non-linear turbulence is used. This positive response

is also present in the mean temperature. This may suggest that an accurate prediction of

the flow field along with an appropriate model for the heat flux are essential to address the

shortcomings of heat flux models in predicting heat fluxes in homogeneous directions. Fig.

9c depicts the wall-normal heat fluxes obtained by TV-R and TV-E. It can be observed that

the wall-normal heat flux can be accurately predicted, if the non-linear turbulence model

(LA) is used.

Using the mixed time scale (TV-M) offers improvements for the streamwise heat flux (Fig.

9b). In particular, thermal time scale appears to play an integral role in predicting second

order statistics in the core region. Additionally, the discrepancy in the near-wall region is

thought to be due the inaccurate prediction of the turbulent kinetic energy in this region, as

discussed before.
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Figure 9: Streamwise (a) and (b), and wall-normal (c) heat fluxes obtained for Pr = 0.71 at
Reτ= 395 with the explicit heat flux model
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4.1.2.3 Temperature Variance

Temperature variances (θr ms) obtained by TV-R and the explicit heat flux model are shown

in Fig. 10a. As can be seen, the explicit model shows sensitivity to the accuracy of the flow

field. Inclusion of an extra transport equation for εθ , i.e. TV-E, seems to affect the results

obtained with both turbulence models, leading to overall improvements, see Fig. 10b. This

demonstrates that providing more accurate data on the thermal time scale (i.e. considering

an extra transport equation for εθ) appears to be at least partially relevant to capture near-wall

dynamics accurately. The inaccuracy in the wall-region could be due to existing inaccuracy

in prediction of the turbulent kinetic energy (k) in this region and potentially, considering

constant σθ.
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Figure 10: Temperature rms obtained by TV-R and TV-E for Pr = 0.71 at Reτ= 395 with the
explicit heat flux model

4.2 Pr = 0.025 AND EXPLICIT HEAT FLUX MODEL

In contrast to fluids with Pr numbers around unity, thermal boundary layers of fluids with

Pr numbers substantially less than unity show different characteristics compared to the

velocity (hydrodynamics) boundary layer. In particular, thermal boundary layers of low Pr

number fluids are thicker than hydrodynamic boundary layers, leading to much smaller

thermal time scales as shown in Fig. 1. It should be noted that, for brevity of the paper, results

obtained using the implicit model will not be shown as the model fails completely to capture

essential thermal quantities, i.e., the streamwise and wall-normal heat fluxes, that leads

to misprediction of other quantities. In particular, the model shows almost no sensitivity

23



to the heat fluxes in both directions, although the model is expected to be able dealing

with low Pr number fluids [36, 34]. Furthermore, the model fails to respond consistently to

the improvement of the flow field prediction provided by the non-linear turbulence model,

similar to what was observed for the previous case (Pr =0.71).

4.2.1 MEAN TEMPERATURE

The mean temperatures obtained with both turbulence models using the explicit heat flux

model within TV-R, TV-E and TV-M approaches are shown in Fig. 11. The results obtained

with both turbulence models underestimate mean temperature in the core region of the

channel, consistent with overprediction of wall-normal heat flux in this region, Fig. 13.

Inclusion of the thermal time scale in conjunction with the non-linear turbulence model

offers some improvement pointing to potential relevance of the thermal time scale.
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Figure 11: Mean temperature obtained by TV-R, TV-E and TV-M for Pr = 0.025 at Reτ= 395
with the explicit heat flux model

4.2.2 STREAMWISE AND WALL-NORMAL HEAT FLUX

Fig. 12a shows the streamwise heat fluxes obtained by TV-R and TV-E using both turbulence

models. The explicit heat flux model shows some degree of sensitivity to the heat flux in

the streamwise direction (in contrast to the implicit model). However, the flux is strongly

overpredicted, which leads to misprediction of other thermal quantities.

Including the mixed time scale (TV-M) offers somehow improvements to capture the

general behavior of the heat flux (Fig. 12b), demonstrating promising potential of explicit

framework for reliable prediction of thermal quantities. In particular, results are indicative of
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relevance of thermal time scale to capture second order statistics thermal field for fluids with

Pr numbers other than unity. However, there are still remarkable deviations from reference

data in the core region, which is thought to be due to inaccuracy in predicting the thermal

time scale, given that the flow quantities are fairly well predicted in this region.
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Figure 12: Streamwise heat flux obtained by TV-R, TV-E and TV-M for Pr = 0.025 at Reτ= 395
with the explicit heat flux model

Wall-normal flux obtained from TV-R, TV-E and TV-M is shown in Fig. 13. All approaches

are capable of capturing the general trend in the core region, particularly when the non-linear

turbulence model was used. Nevertheless, the profile is strongly overpredicted.
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Figure 13: Wall-normal heat flux obtained by TV-R, TV-E and TV-M for Pr = 0.025 at Reτ= 395
with the explicit heat flux model

4.2.3 TEMPERATURE VARIANCE

Temperature variances (θr ms) obtained by TV-R and the explicit heat flux model are shown

in Fig. 14a. As can be seen, the explicit model shows no sensitivity to the accuracy of the
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flow field but captures the trend of θr ms accurately. However, there is overprediction present

which is thought to trace back to inaccurate predictions of heat fluxes and thermal dissipation.

Inclusion of an extra transport equation for εθ (TV-E) seems to affect the results obtained with

both turbulence models, most notably when the Reynolds stresses are predicted at a higher

level of accuracy, Fig. 14b. Inclusion of the mixed time scale shows only slight improvements

close to the channel core when the non-linear turbulence model was applied, Fig. 14c.
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Figure 14: Temperature rms obtained by TV-R, TV-E and TV-M for Pr = 0.025 at Reτ= 395 with
the explicit heat flux model

4.2.4 DISSIPATION OF TEMPERATURE VARIANCE

Thermal dissipation (εθ) plays an important role to accurately predict the temperature vari-

ance, as well as heat fluxes when the thermal time scale is considered. Results for the

dissipation of temperature variance obtained for TV-R are presented in Fig. 15a. The profiles

obtained with both turbulence model mostly differ in near-wall region (y+ < 100), while fail

to capture the plateau behavior. Some improvement regarding the general tendency of εθ

can be observed, when an additional transport equation for εθ (TV-E) is used, most notably

using the non-linear turbulence model, Fig. 15b.

Inclusion of the mixed time scale (TV-M) shows improvements regarding the magnitude

of the captured plateau obtained with both turbulence model, Fig. 15c. The explicit model

shows consistent sensitivity to the turbulence model, as well as to the inclusion of the mixed

time scale. However, it should be noted that although some improvement regarding the

overall behavior has been achieved, there are still significant deviation from the reference

data. In particular, the location of the peak is mispredicted and has not been improved

after inclusion of the mixed time scale. This can be traced back to two characteristics of the

modeled εθ equation. First, ε and k play an integral role in the production terms of εθ, see Eq.

17. As shown before, both turbulence model underpredict these quantities. Secondly, these
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results may suggest that εθ, in case of low Pr number fluids, should not be modeled solely

based on similar assumptions made to model the dissipation of turbulent kinetic energy

(ε), see Section 2.3.2 for details. Finally, inaccuracy in prediction of εθ and θr ms leads to an

inaccurate prediction of the thermal time scale contributing to misprediction of heat fluxes

and ultimately other thermal quantities within TV-M approach.
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Figure 15: Dissipation of temperature variance obtained by TV-R, TV-E and TV-M for Pr =
0.025 at Reτ= 395 with the explicit heat flux model

4.3 Pr = 10 AND EXPLICIT HEAT FLUX MODEL

In contrast to low Prandtl number fluids, the thermal boundary layer for high Pr number

fluids is much thinner than the velocity boundary layer. This requires a different mesh

design to capture dynamics of the thermal boundary layer accurately. In particular, much

finer resolution is necessary in near-wall region as discussed in [42]. Moreover, it will be

shown that the thermal time scale needs to be considered in order to increase the prediction

accuracy of first and second order statistics such as mean temperature and temperature

variance. Again, results obtained by the implicit model are not shown here as it fails to predict

the thermal quantities such as mean temperature.

4.3.1 MEAN TEMPERATURE

The mean temperature obtained with LS underestimates the profile, while using LA leads to

an overprediction of mean temperature, Fig. 16a. The core region is not well predicted, which

traces back to the misprediction of wall-normal heat flux in the near-wall region, Fig. 17.

Introducing the thermal time scale into the explicit heat flux model has a remarkable effect

on the prediction when LA turbulence model is used, leading to a profile that is in good

agreement with the reference data, Fig. 16b. Accordingly, the wall-normal heat flux shows
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some improvements, Fig. 17d. This indicates the relevance of the thermal time scale in the

wall-region, as well as, accuracy of the flow field when dealing with high Pr number fluids.
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Figure 16: Mean temperature obtained by TV-R, TV-E and TV-M for Pr = 10 at Reτ= 395 with
the explicit heat flux model

4.3.2 STREAMWISE AND WALL-NORMAL HEAT FLUX

Fig. 17a presents the streamwise heat fluxes obtained by TV-R and TV-E. Regardless of the

turbulence model, the heat flux is underpredicted and leads to misprediciton of other thermal

quantities.

Inclusion of the mixed time scale leads to significant improvements when the the non-

linear turbulence model is used, Fig. 17b. However, it should be noted that if the flow field is

not predicted at an acceptable level of accuracy, the heat flux model could potentially deliver

a remarkable discrepancy or even become numerical unstable, as demonstrated here when

using the linear turbulence model (LS).

Fig. 17c depicts the wall-normal heat fluxes obtained by TV-R and TV-E. It can be observed

that the explicit heat flux model is capable to predict the wall-normal heat flux fairly accurate

except for regions very close to the wall (y+ < 10), irrespective of turbulence model.

Inclusion of the mixed time scale improves prediction accuracy in the near-wall region,

when the non-linear turbulence model is used, Fig. 17d. As mentioned before, this leads

to improvement of other thermal quantities, e.g. mean temperature. In contrast, using the

linear turbulence model for the flow field leads to a significant error. Therefore, it may be

deduced that the thermal time scale plays an integral role to capture the thermal field of high

Pr number fluids, however, the flow field needs to be captured at a certain level of accuracy.
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Figure 17: Streamwise and wall-normal heat flux obtained by TV-R, TV-E and TV-M for Pr =
10 at Reτ= 395 with the explicit heat flux model

4.3.3 TEMPERATURE VARIANCE

Temperature variances (θr ms) obtained by TV-R and the explicit heat flux model are shown

in Fig. 18a. As can be observed, the explicit model captures the general behavior with both

turbulence models, however, with a significant deviation from reference data. Moreover,

using an extra transport equation for εθ (TV-E) provides improvement (Fig. 18b), pointing to

the different dynamics of thermal time scale compared to mechanical time scale.

Inclusion of the mixed time scale (TV-M) affects the results obtained with both turbulence

models, Fig. 18c. While remarkable improvements can be observed for the prediction with LA,

θr ms predicted with LS demonstrates notable discrepancy. The accurate prediction is mainly

a direct result of accurate predictions of wall-normal heat flux, as well as mean temperature,

when the thermal time scale is considered in the heat flux model.
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Figure 18: Temperature rms obtained by TV-R, TV-E and TV-M for Pr = 10 at Reτ= 395 with
the explicit heat flux model

5 CONCLUSION AND OUTLOOK

The current study aims at taking a foundational step towards identification and development

of a reliable framework to predict the thermal field of different fluids in turbulent wall-

bounded shear flows. Therefore, the most recent versions of implicit and explicit heat flux

models have been thoroughly assessed. This includes the application of the models to

turbulent wall-bounded attached shear flows of different Prandtl number fluids. Further,

sensitivity of both models with respect to the prediction accuracy of the flow field (mean

velocity and the Reynolds stress tensor) has been studied.
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Figure 19: Best results for the ratio of thermal to mechanical time scale obtained by TV-M,
non-linear turbulence model and explicit heat flux model for Pr = 0.025, 0.7 and 10
at Reτ= 395

It turns out that the NRG formulation (the most recent formulation) of implicit framework

has difficulty to establish a consistent coupling to the flow field, which leads to inappropriate

responses to the flow field prediction accuracy. As a results of this, the model is incapable

of providing accurate results for thermal quantities such mean temperature, irrespective

of the Pr number, even when the flow field and in particular, the Reynolds stress tensor
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is accurately predicted. However, it appears that the model delivers accurate results for

mean temperature for fluids with Pr numbers around unity and less, as shown in [36], if a

specific turbulence model is used, for which model constants have been calibrated. However,

capability of the model in predicting heat fluxes has never been demonstrated and discussed

in corresponding investigations [36, 34]. This makes the model calibration to create a general

and robust computation framework extremely difficult. Moreover, the implicit model used

here appears to have difficulty dealing with heat flux in homogeneous directions, irrespective

of the Pr number and turbulence model.

In contrast, the explicit framework indicates potential capability to deal with complex

turbulent thermal fields of different working fluids. In particular, it responds consistently to

the accuracy of the flow field prediction, i.e. accurate prediction of the flow field including

mean quantities and the Reynolds stress tensor is required for an accurate prediction of the

thermal field. The necessity of accurate prediction of the flow field becomes more crucial

when near-wall effects become more relevant for high Pr number fluids. In particular, if

near-wall effects ( 3D characteristics of turbulence) are not provided at an acceptable level

of accuracy, the model fails completely. This is best shown in predictions of heat fluxes for

high Pr number (Pr= 10), when the linear model (LS) was used to describe the flow field,

Fig. 17. Moreover, it turns out the explicit formulation has the potential to address the

main issues of heat transfer models and shows capability (sensitivity) to capture the heat

flux in homogeneous directions. Additionally, inclusion of the thermal time scale to the

model has shown to be necessary for accurate prediction of the thermal field of fluids with

Pr number other than unity. However, currently available modeled transport equations

for thermal dissipation appear to be inappropriate to be applied to fluids with Pr numbers

other than unity (see the appendix for the thermal dissipation for Pr= 10 obtained from

the explicit model), as it leads to inaccurate thermal time scale, which is demonstrated in

Fig. 19. The results obtained here reveal that the development and modeling of thermal

dissipation (as a key element of thermal time scale) in fluids with Pr numbers different than

unity cannot be based on same arguments and strategies as for the flow field at high Reynolds

number. Therefore, there is a need for much more in-depth investigations using high fidelity

approaches (i.e., DNS) to identify and understand major dynamics of thermal dissipation in

such fluids, which probably will be different for high and low Pr number fluids. However,

those investigations are out of the scope of the current paper.

31



6 ACKNOWLEDGMENT

Dr. Mueller is acknowledged for providing the original source code for the explicit heat flux

model. This work was supported using start-up funds from the University of Missouri-Kansas

City.

7 APPENDIX

DISSIPATION OF TEMPERATURE VARIANCE FOR Pr =10

The explicit heat flux model provides improvement when the mixed time scale is used in

conjunction with the non-linear turbulence model, consistent with other thermal quantities.

However, the opposite is true for the linear turbulence model, as shown in Figure. 20c.
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